
Vertex algebras.

Daniil Klyuev

1 Definition and basic examples of vertex alge-

bras.

Our main reference is Frenkel’s book [F]. Another reference is Frenkel—
Ben–Zvi’s book [FBZ]. There are also notes from MIT seminar on affine
Kac-Moody algebras on critical level that followed Frenkel’s book [D1, D2].

Definition 1.1. Let 𝑉 be a vector space. A field on 𝑉 is an element 𝐴(𝑧)
of (End𝑉 )[[𝑧, 𝑧−1]] such that for any 𝑣 ∈ 𝑉 we have 𝐴(𝑧)𝑣 ∈ 𝑉 ((𝑧)). That
is, if we write 𝐴(𝑧) =

∑︀
𝐴𝑗𝑧

−𝑗, 𝐴𝑗𝑣 = 0 for large enough 𝑗.

Definition 1.2. Vertex algebra is a collection of data:

1. A vector space 𝑉 , called the space of states.

2. An element |0⟩ ∈ 𝑉 , called vacuum vector.

3. An endomorphism 𝑇 : 𝑉 → 𝑉 , called translation operator.

4. A map 𝑌 (·, 𝑧) : 𝑉 → End(𝑉 )[[𝑧, 𝑧−1]] that sends 𝐴 ∈ 𝑉 to a field
𝑌 (𝐴, 𝑧) =

∑︀
𝐴(𝑛)𝑧

−𝑛−1.

This data satisfies the following axioms:

1. 𝑌 (|0⟩, 𝑧) = Id𝑉 .

2. 𝑌 (𝐴, 𝑧)|0⟩ = 𝐴+ 𝑧(· · · ) ∈ 𝑉 [[𝑧]]..

3. [𝑇, 𝑌 (𝐴, 𝑧)] = 𝜕𝑧𝑌 (𝐴, 𝑧).

4. 𝑇 |0⟩ = 0.
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5. Locality: for any 𝐴,𝐵 ∈ 𝑉 there exists a positive integer 𝑁 such that
(𝑧 − 𝑤)𝑁 [𝑌 (𝐴, 𝑧), 𝑌 (𝐵,𝑤)] = 0.

𝑉 is called graded vector algebra if 𝑉 is a graded vector space and we
have vacuum vector in degree zero, 𝑇 a map of degree one and deg𝐴(𝑛) =
deg𝐴− 𝑛− 1 for a homogeneous element 𝐴.

An example of a vertex algebra is a commutative algebra 𝑉 with deriva-
tion 𝑇 . We define |0⟩ = 1 and

𝑌 (𝐴, 𝑧) =
∑︁

𝑧𝑛𝑚𝑢𝑙𝑡(
𝑇 𝑛𝐴

𝑛!
) = 𝑚𝑢𝑙𝑡(𝑒𝑇𝑧𝐴),

where𝑚𝑢𝑙𝑡 is the operator of multiplication. It is not hard to check that 𝑇, |0⟩
and 𝑌 define a vertex algebra structure on 𝑉 . Moreover, we can take 𝑁 = 0
while checking locality, the fields just commute: [𝑌 (𝐴, 𝑧), 𝑌 (𝐵,𝑤)] = 0. Also
note that 𝑌 (𝐴, 𝑧) is a power series with no negative terms. One can check
that these conditions are equivalent:

1. [𝑌 (𝐴, 𝑧), 𝑌 (𝐵,𝑤)] = 0.

2. 𝑌 (𝐴, 𝑧) ∈ End𝑉 [[𝑧]] for all 𝐴.

3. The structure of vertex algebra on 𝑉 comes from a structure of a com-
mutative algebra on 𝑉 .

Moreover, the multiplication can be written as 𝐴𝐵 = 𝐴(−1)𝐵.

2 Heisenberg, Kac-Moody and Virasoro vertex

algebras. Reconstruction theorem.

Now we consider vertex algebras corresponding to Heisenberg and affine Kac-
Moody algebras. In all these examples, our algebra â has basis a[𝑡, 𝑡−1]⊕C1
and a[𝑡]⊕C ⊂ â is a direct sum. Consider 𝑉 𝜅(a) = 𝑈(â)⊗𝑈(a[𝑡]⊕C1)C, where
a[𝑡] acts trivially on C and 1 acts as the identity. Define |0⟩ = 1⊗ 1. Define
grading by the rule deg 𝑥𝑡𝑛 = −𝑛. Let 𝑇 acts by −𝜕𝑡, this is a well-define
operation on 𝑉 𝜅.

It remains to describe state-field correspondence. For 𝑎 ∈ a let 𝑎𝑛 = 𝑎𝑡𝑛.
Define 𝑌 (𝑎−1|0⟩) =

∑︀
𝑎𝑘𝑧

−𝑘−1. Here by 𝑎𝑘 we mean the action of 𝑎𝑘 on
𝑉 𝜅. One can think of this formula as follows: we should have 𝑌 (𝑎−1|0⟩)|0⟩ =
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𝑎−1|0⟩+𝑧(...), this motivates the constant coefficient. Then [𝑇, 𝑌 (𝑎−1|0⟩, 𝑧)] =
𝜕𝑧𝑌 (𝑎−1|0⟩, 𝑧) and higher derivatives define the endomorphisms for positive
powers of 𝑧, and we use the same formula 𝑎𝑘𝑧

−𝑘−1 for nonnegative 𝑘.
In commutative vertex algebras we have 𝑌 (𝑇𝐴, 𝑧) = 𝜕𝑧𝑌 (𝐴, 𝑧). One

can show this property in general. In Frenkel’s book this is proved as a
consequence of associativity in vertex algebras that we will discuss below.

Since

𝑎−𝑘|0⟩ =
𝑇 𝑘−1

(𝑘 − 1)!
𝑎−1|0⟩,

we have

𝑌 (𝑎−𝑘|0⟩, 𝑧) =
𝜕𝑘−1
𝑧

(𝑘 − 1)!
𝑌 (𝑎−1|0⟩, 𝑧) =

∑︁(︂
−𝑙 − 1

𝑘

)︂
𝑎𝑙𝑧

−𝑘−𝑙−1.

What about all the other elements of the basis, 𝑎−𝑛1𝑎−𝑛2 · · · 𝑎−𝑛𝑘
|0⟩? In

commutative case, we would just take the product of fields. We cannot do
that now, the product of fields is not a well-defined element of End𝑉 [[𝑧, 𝑧−1]].
But we can take normally ordered product:

: 𝐴(𝑧)𝐵(𝑧) := 𝐴(𝑧)+𝐵(𝑧) +𝐵(𝑧)𝐴(𝑧)−,

where 𝐴(𝑧)+ has nonnegative powers of 𝑧 and 𝐴(𝑧)− has negative powers of
𝑧. Normal ordering is non-associative operation, for several arguments we
just close all brackets on the right: : 𝐴(𝑧)𝐵(𝑧)𝐶(𝑧) :=: 𝐴(𝑧) : 𝐵(𝑧)𝐶(𝑧) ::.

Choose basis 𝐽1, . . . , 𝐽𝑑 of the algebra a and denote 𝐽𝑎(𝑧) =
∑︀

𝐽𝑎
𝑖 𝑧

−𝑖−1.
So the final formula is

𝑌 (𝐽𝑎1
𝑛1
𝐽𝑎2
𝑛2

· · · 𝐽𝑎𝑘
𝑛𝑘
|0⟩, 𝑧) =:

𝜕−𝑛1−1
𝑧

(−𝑛1 − 1)!
𝐽𝑎1(𝑧)

𝜕−𝑛2−1
𝑧

(−𝑛2 − 1)!
𝐽𝑎2(𝑧) · · ·

𝜕−𝑛𝑘−1
𝑧

(−𝑛𝑘 − 1)!
𝐽𝑎𝑘(𝑧),

where we take 𝑛1, . . . , 𝑛𝑘 strictly negative.
We gave the data of the vertex algebra on 𝑉 𝜅. Checking the axioms of

vertex algebra is relatively straightforward for everything except locality.
Recall that the Lie bracket is [𝑎𝑛, 𝑏𝑚] = [𝑎, 𝑏]𝑛+𝑚 + 𝑛𝛿𝑛+𝑚,0𝜅(𝑎, 𝑏), where

𝜅 is an invariant bilinear form. It follows that

[𝐽𝑎(𝑧), 𝐽 𝑏(𝑧)] = [𝐽𝑎, 𝐽 𝑏](𝑤)𝛿(𝑧 − 𝑤) + 𝜅(𝐽𝑎, 𝐽 𝑏)𝛿′(𝑧 − 𝑤)

All other fields are constructed from 𝐽0(𝑧), . . . , 𝐽𝑑(𝑧) using normally or-
dered products. Now locality axiom follows from Dong’s lemma (Lemma
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2.2.3 in Frenkel’s book): if 𝐴,𝐵,𝐶 are mutually local, then : 𝐴𝐵 :, 𝐶 are
also local with respect to each other.

The same reasoning proves the weak reconstruction theorem (Theorem
2.2.4 in Frenkel’s book): if we have fields 𝑎𝛼(𝑧) =

∑︀
𝛼(𝑛)𝑧

−𝑛−1 such that
[𝑇, 𝑎𝛼] = 𝜕𝑧𝑎

𝛼(𝑧), 𝑇 |0⟩ = 0, 𝑎𝛼(𝑧)|0⟩ = 𝑎𝛼 + 𝑧 · · · , they are mutually local,
and the elements 𝛼(𝑛1) · · ·𝛼(𝑛𝑚)|0⟩ form a basis of 𝑉 , then there is a vertex
algebra structure on 𝑉 such that 𝑌 (𝑎𝛼, 𝑧) = 𝑎𝛼(𝑧) and 𝑇 = 𝑇 , |0⟩ = |0⟩.

In strong reconstruction theorem we require the elements above to be
just spanning set, not necessarily the generators. Moreover, this is unique
structure of a vertex algebra on 𝑉 such that 𝑌 (𝑎𝛼, 𝑧) = 𝑎𝛼(𝑧) and 𝑇 = 𝑇 ,
|0⟩ = |0⟩.

Virasoro algebra is a Lie algebra with

[𝐿𝑛, 𝐿𝑚] = (𝑛−𝑚)𝐿𝑛+𝑚 +
𝑛3 − 𝑛

12
𝛿𝑛+𝑚,01.

Here 𝐿𝑛 corresponds to−𝑡𝑛+1𝜕𝑡 in Witt algebra. The elements 1, 𝐿−1, 𝐿0, · · · ,
form a subalgebra of Vir, which has representation C𝑐: 1 acts by 𝑐, central
charge, 𝐿𝑖 act by zero. Let Vir𝑐 be the induced representation. Let deg𝐿𝑛 =
−𝑛, 𝑇 = 𝐿−1 = −𝜕𝑡 and 𝑌 (𝐿−2|0⟩, 𝑧) =

∑︀
𝐿𝑛𝑧

−𝑛−2, a field of degree −2, as
required by axioms of graded vertex algebras.

Using weak reconstruction it is enough to compute

[𝑇 (𝑧), 𝑇 (𝑤)] =
𝑐

12
𝛿′′′(𝑧 − 𝑤) + 2𝑇 (𝑤)𝛿′(𝑧 − 𝑤) + 2𝑇 ′(𝑤)𝛿(𝑧 − 𝑤).

A conformal vertex algebra (also called vertex operator algebra) is a
graded vertex algebra with a conformal vector: 𝑌 (𝜔, 𝑧) =

∑︀
𝐿𝑉
𝑛 𝑧

−𝑛−2, 𝐿𝑉
𝑛

satisfy relations of Virasoro, 𝐿𝑉
−1 = 𝑇 , 𝐿𝑉

0 is a grading operator. This gives a
vertex algebra homomorphism from 𝑉 𝑖𝑟 to 𝑉 , we will not define this notion.

3 Basis properties of vertex algebras.

Skew symmetry: for all 𝐴,𝐵 ∈ 𝑉 we have 𝑌 (𝐴, 𝑧)𝐵 = 𝑒𝑧𝑇𝑌 (𝐵,−𝑧)𝐴.
Associativity: expressions

𝑌 (𝐴, 𝑧)𝑌 (𝐵,𝑤)𝐶, 𝑌 (𝐵,𝑤)𝑌 (𝐴, 𝑧)𝐶, 𝑌 (𝑌 (𝐴, 𝑧 − 𝑤)𝐵,𝑤)𝐶

are expansions in 𝑉 ((𝑧))((𝑤)), 𝑉 ((𝑤))((𝑧)) and 𝑉 ((𝑤))((𝑧−𝑤)) of the same
element of 𝑉 [[𝑧, 𝑤]][𝑧−1, 𝑤−1, (𝑧 − 𝑤)−1].
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Skew-symmetry and associativity are proved in Frenkel’s book. In the
case of commutative vertex algebra we get 𝑌 (𝑌 (𝐴, 𝑧 − 𝑤)𝐵,𝑤)𝐶 =

∑︀
(𝑧 −

𝑤)𝑖𝑌 (𝑇
𝑖𝐴
𝑖!
𝐵,𝑤)𝐶 =

∑︀
(𝑧 − 𝑤)𝑖𝑤𝑗 𝑇 𝑗

𝑗!
(𝑇

𝑖𝐴
𝑖!
𝐵)𝐶. We have

𝑇 𝑗(𝑇 𝑖𝐴 ·𝐵) =
∑︁

𝑇 𝑖+𝑘𝐴𝑇 𝑗−𝑘𝐵
𝑗!

𝑘!(𝑗 − 𝑘)!
.

For fixed 𝑖+ 𝑘 = 𝑎 and 𝑗 − 𝑘 = 𝑏 we get

𝑎+𝑏∑︁
𝑗=𝑏

(𝑧 − 𝑤)𝑎+𝑏−𝑗𝑤𝑗 1

(𝑎+ 𝑏− 𝑗)!𝑏!(𝑗 − 𝑏)!
.

Writing 𝑤𝑗 = 𝑤𝑏𝑤𝑗−𝑏 we use binomial formula to get

𝑧𝑎𝑤𝑏

𝑎!𝑏!
𝑇 𝑎𝐴𝑇 𝑏𝐵𝐶,

as we should.
Using associativity we get 𝑌 (𝐴, 𝑧)𝑌 (𝐵,𝑤) = 𝑌 (𝑌 (𝐴, 𝑧 − 𝑤)𝐵,𝑤) =∑︀
𝑌 (𝐴(𝑛)𝐵,𝑤)(𝑧 − 𝑤)−𝑛−1. This expression is called operator product ex-

pansion, they are used a lot in physics.
One of the consequence of associativity is the following formula (formula

(2.3-8) from Frenkel’s book):

[𝐴(𝑚), 𝐵(𝑘)] =
∑︁
𝑛≥0

(︂
𝑚

𝑛

)︂
(𝐴(𝑛)𝐵)𝑚+𝑘−𝑛. (1)

We will also need Borcherds identity:

(𝐴(𝑚)𝐵)(𝑛)𝐶 =
∑︁
𝑖≥0

(−1)𝑖
(︂
𝑚

𝑖

)︂(︂
𝐴(𝑚−𝑖)(𝐵(𝑛+𝑖)(𝐶))−(−1)𝑚𝐵(𝑚+𝑛−𝑖)(𝐴(𝑖)(𝐶))

)︂
.

(2)
𝐶2-algebra of a vertex algebra 𝑉 is defined as

𝑉/ Span{𝑎(−2)𝑏 | 𝑎, 𝑏 ∈ 𝑉 }

with operation 𝑎 · 𝑏 = 𝑎(−1)𝑏, compare with the formula for commutative
vertex algebra.
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This operation is well-defined:

𝑎(−1)𝑏(−2)𝑐 ∼ [𝑎(−1), 𝑏−2]𝑐 =
∑︁
𝑛≥0

(︂
−1

𝑛

)︂
(𝐴(𝑛)𝐵)−3−𝑛𝐶 ∼ 0,

here we used (1). Using (2) we get

(𝑎−2𝑏)−1𝑐 =
∑︁
𝑖≥0

(· · ·𝐴−2−𝑖 · · ·𝐵−3−𝑖 · · · ) ∼ 0.

Using Borcherds identity again for 𝑚 = 𝑛 = −1 we see that the only term
not equivalent to zero is 𝐴−1(𝐵−1𝐶), this gives

(𝐴−1𝐵)−1𝐶 = 𝐴−1(𝐵−1𝐶).

Using (1) we see that this operation is commutative.
It can also be checked that 𝑎(0)𝑏 gives a Poisson bracket on 𝐶2 algebra.
Zhu algebra of a graded vertex algebra 𝑉 is defined as

𝑍ℎ𝑢(𝑉 ) = 𝑉/(𝑉 ∘ 𝑉 ).

Here

𝑎 ∘ 𝑏 =
∑︁
𝑖≥0

(︂
deg 𝑎

𝑖

)︂
𝑎(𝑖−2)𝑏

for homogeneous elements. We define operation on 𝑍ℎ𝑢(𝑉 ) using

𝑎 * 𝑏 =
∑︁
𝑖≥0

(︂
deg 𝑎

𝑖

)︂
𝑎(𝑖−1)𝑏.

Let 𝑜(𝑎) = 𝑎(deg 𝑎−1). Then 𝑜(𝑎) preserves graded components of any
graded 𝑉 -module (for a 𝑉 -module𝑀 by 𝑎(𝑚) we mean the corresponding field
on 𝑀 .) The 𝑎 ↦→ 𝑜(𝑎) gives a representation of 𝑍ℎ𝑢(𝑉 ) on 𝑀𝑡𝑜𝑝, the lowest
degree component of 𝑀 . This provides an equivalence between irreducible
positive energy representations of 𝑉 and simple 𝑍ℎ𝑢(𝑉 )-modules.

𝑉 is called chiralization of 𝐴 if 𝑍ℎ𝑢(𝑉 ) = 𝐴.
Positive grading on 𝑉 gives filtration on 𝑉 , hence filtration on 𝑍ℎ𝑢(𝑉 ).

It can be checked that 𝐶2-algebra surjects onto gr Zhu(𝑉 ). Moreover, com-
paring formulas we see that this is a map of Poisson algebras.

Example: one can show that 𝑉 𝜅(a) is a chiralization of 𝑈(a).

6



References

[D1] Ilya Dumanski. Vertex Algebras I, https://gauss.math.yale.edu/ il282/Ilya1pdf

[D2] Ilya Dumanski, Vertex Algebras II,
https://gauss.math.yale.edu/ il282/Ilya2.pdf

[F] Edward Frenkel. Langlands correspondence for loop groups.
https://math.berkeley.edu/ frenkel/loop.pdf

[FBZ] E. V. Frenkel and D. Ben-Zvi, Vertex algebras and algebraic curves,
vol. 88, Second ed., Mathematical Surveys and Monographs, American
Mathematical Society, Providence, RI, 2004. MR 2005d:17035

7


