Vertex algebras.

Daniil Klyuev

1 Definition and basic examples of vertex algebras.

Our main reference is Frenkel's book [F]. Another reference is Frenkel—Ben–Zvi's book [FBZ]. There are also notes from MIT seminar on affine Kac-Moody algebras on critical level that followed Frenkel's book [D1, D2].

Definition 1.1. Let V be a vector space. A field on V is an element A(z) of $(\operatorname{End} V)[[z,z^{-1}]]$ such that for any $v \in V$ we have $A(z)v \in V((z))$. That is, if we write $A(z) = \sum A_j z^{-j}$, $A_j v = 0$ for large enough j.

Definition 1.2. Vertex algebra is a collection of data:

- 1. A vector space V, called the space of states.
- 2. An element $|0\rangle \in V$, called vacuum vector.
- 3. An endomorphism $T \colon V \to V$, called translation operator.
- 4. A map $Y(\cdot,z)\colon V\to \mathrm{End}(V)[[z,z^{-1}]]$ that sends $A\in V$ to a field $Y(A,z)=\sum A_{(n)}z^{-n-1}.$

This data satisfies the following axioms:

- 1. $Y(|0\rangle, z) = \mathrm{Id}_{V}$.
- 2. $Y(A, z)|0\rangle = A + z(\cdots) \in V[[z]]..$
- 3. $[T, Y(A, z)] = \partial_z Y(A, z)$.
- 4. $T|0\rangle = 0$.

5. Locality: for any $A, B \in V$ there exists a positive integer N such that $(z-w)^N[Y(A,z),Y(B,w)]=0$.

V is called graded vector algebra if V is a graded vector space and we have vacuum vector in degree zero, T a map of degree one and $\deg A_{(n)} = \deg A - n - 1$ for a homogeneous element A.

An example of a vertex algebra is a commutative algebra V with derivation T. We define $|0\rangle = 1$ and

$$Y(A, z) = \sum_{n=0}^{\infty} z^n mult(\frac{T^n A}{n!}) = mult(e^{Tz} A),$$

where mult is the operator of multiplication. It is not hard to check that $T, |0\rangle$ and Y define a vertex algebra structure on V. Moreover, we can take N = 0 while checking locality, the fields just commute: [Y(A, z), Y(B, w)] = 0. Also note that Y(A, z) is a power series with no negative terms. One can check that these conditions are equivalent:

- 1. [Y(A,z), Y(B,w)] = 0.
- 2. $Y(A, z) \in \text{End } V[[z]] \text{ for all } A.$
- 3. The structure of vertex algebra on V comes from a structure of a commutative algebra on V.

Moreover, the multiplication can be written as $AB = A_{(-1)}B$.

2 Heisenberg, Kac-Moody and Virasoro vertex algebras. Reconstruction theorem.

Now we consider vertex algebras corresponding to Heisenberg and affine Kac-Moody algebras. In all these examples, our algebra $\hat{\mathfrak{a}}$ has basis $\mathfrak{a}[t,t^{-1}]\oplus\mathbb{C}\mathbf{1}$ and $\mathfrak{a}[t]\oplus\mathbb{C}\subset\hat{\mathfrak{a}}$ is a direct sum. Consider $V^{\kappa}(\mathfrak{a})=U(\hat{\mathfrak{a}})\otimes_{U(\mathfrak{a}[t]\oplus\mathbb{C}\mathbf{1})}\mathbb{C}$, where $\mathfrak{a}[t]$ acts trivially on \mathbb{C} and $\mathbf{1}$ acts as the identity. Define $|0\rangle=1\otimes 1$. Define grading by the rule $\deg xt^n=-n$. Let T acts by $-\partial_t$, this is a well-define operation on V^{κ} .

It remains to describe state-field correspondence. For $a \in \mathfrak{a}$ let $a_n = at^n$. Define $Y(a_{-1}|0\rangle) = \sum a_k z^{-k-1}$. Here by a_k we mean the action of a_k on V^{κ} . One can think of this formula as follows: we should have $Y(a_{-1}|0\rangle)|0\rangle =$

 $a_{-1}|0\rangle+z(...)$, this motivates the constant coefficient. Then $[T,Y(a_{-1}|0\rangle,z)]=\partial_z Y(a_{-1}|0\rangle,z)$ and higher derivatives define the endomorphisms for positive powers of z, and we use the same formula $a_k z^{-k-1}$ for nonnegative k.

In commutative vertex algebras we have $Y(TA, z) = \partial_z Y(A, z)$. One can show this property in general. In Frenkel's book this is proved as a consequence of associativity in vertex algebras that we will discuss below.

Since

$$a_{-k}|0\rangle = \frac{T^{k-1}}{(k-1)!}a_{-1}|0\rangle,$$

we have

$$Y(a_{-k}|0\rangle, z) = \frac{\partial_z^{k-1}}{(k-1)!} Y(a_{-1}|0\rangle, z) = \sum_{l} {\binom{-l-1}{k}} a_l z^{-k-l-1}.$$

What about all the other elements of the basis, $a_{-n_1}a_{-n_2}\cdots a_{-n_k}|0\rangle$? In commutative case, we would just take the product of fields. We cannot do that now, the product of fields is not a well-defined element of End $V[[z,z^{-1}]]$. But we can take normally ordered product:

$$: A(z)B(z) := A(z)_{+}B(z) + B(z)A(z)_{-},$$

where $A(z)_+$ has nonnegative powers of z and $A(z)_-$ has negative powers of z. Normal ordering is non-associative operation, for several arguments we just close all brackets on the right: A(z)B(z)C(z) :=: A(z): B(z)C(z)::

Choose basis J^1, \ldots, J^d of the algebra \mathfrak{a} and denote $J^a(z) = \sum J_i^a z^{-i-1}$. So the final formula is

$$Y(J_{n_1}^{a_1}J_{n_2}^{a_2}\cdots J_{n_k}^{a_k}|0\rangle,z) =: \frac{\partial_z^{-n_1-1}}{(-n_1-1)!}J^{a_1}(z)\frac{\partial_z^{-n_2-1}}{(-n_2-1)!}J_{a_2}(z)\cdots\frac{\partial_z^{-n_k-1}}{(-n_k-1)!}J_{a_k}(z),$$

where we take n_1, \ldots, n_k strictly negative.

We gave the data of the vertex algebra on V^{κ} . Checking the axioms of vertex algebra is relatively straightforward for everything except locality.

Recall that the Lie bracket is $[a_n, b_m] = [a, b]_{n+m} + n\delta_{n+m,0}\kappa(a, b)$, where κ is an invariant bilinear form. It follows that

$$[J^{a}(z), J^{b}(z)] = [J^{a}, J^{b}](w)\delta(z - w) + \kappa(J^{a}, J^{b})\delta'(z - w)$$

All other fields are constructed from $J^0(z), \ldots, J^d(z)$ using normally ordered products. Now locality axiom follows from Dong's lemma (Lemma

2.2.3 in Frenkel's book): if A, B, C are mutually local, then : AB : C are also local with respect to each other.

The same reasoning proves the weak reconstruction theorem (Theorem 2.2.4 in Frenkel's book): if we have fields $a^{\alpha}(z) = \sum \alpha_{(n)} z^{-n-1}$ such that $[T, a^{\alpha}] = \partial_z a^{\alpha}(z), T|0\rangle = 0, a^{\alpha}(z)|0\rangle = a^{\alpha} + z \cdots$, they are mutually local, and the elements $\alpha_{(n_1)} \cdots \alpha_{(n_m)}|0\rangle$ form a basis of V, then there is a vertex algebra structure on V such that $Y(a^{\alpha}, z) = a^{\alpha}(z)$ and $T = T, |0\rangle = |0\rangle$.

In strong reconstruction theorem we require the elements above to be just spanning set, not necessarily the generators. Moreover, this is unique structure of a vertex algebra on V such that $Y(a^{\alpha}, z) = a^{\alpha}(z)$ and T = T, $|0\rangle = |0\rangle$.

Virasoro algebra is a Lie algebra with

$$[L_n, L_m] = (n-m)L_{n+m} + \frac{n^3 - n}{12}\delta_{n+m,0}\mathbf{1}.$$

Here L_n corresponds to $-t^{n+1}\partial_t$ in Witt algebra. The elements $\mathbf{1}, L_{-1}, L_0, \cdots$, form a subalgebra of Vir, which has representation \mathbb{C}_c : $\mathbf{1}$ acts by c, central charge, L_i act by zero. Let Vir_c be the induced representation. Let deg $L_n = -n$, $T = L_{-1} = -\partial_t$ and $Y(L_{-2}|0\rangle, z) = \sum L_n z^{-n-2}$, a field of degree -2, as required by axioms of graded vertex algebras.

Using weak reconstruction it is enough to compute

$$[T(z), T(w)] = \frac{c}{12}\delta'''(z-w) + 2T(w)\delta'(z-w) + 2T'(w)\delta(z-w).$$

A conformal vertex algebra (also called vertex operator algebra) is a graded vertex algebra with a conformal vector: $Y(\omega, z) = \sum L_n^V z^{-n-2}$, L_n^V satisfy relations of Virasoro, $L_{-1}^V = T$, L_0^V is a grading operator. This gives a vertex algebra homomorphism from Vir to V, we will not define this notion.

3 Basis properties of vertex algebras.

Skew symmetry: for all $A, B \in V$ we have $Y(A, z)B = e^{zT}Y(B, -z)A$. Associativity: expressions

$$Y(A,z)Y(B,w)C, \qquad Y(B,w)Y(A,z)C, \qquad Y(Y(A,z-w)B,w)C$$

are expansions in V((z))((w)), V((w))((z)) and V((w))((z-w)) of the same element of $V[[z,w]][z^{-1},w^{-1},(z-w)^{-1}]$.

Skew-symmetry and associativity are proved in Frenkel's book. In the case of commutative vertex algebra we get $Y(Y(A, z - w)B, w)C = \sum (z - w)^i Y(\frac{T^i A}{i!}B, w)C = \sum (z - w)^i w^j \frac{T^j}{j!} (\frac{T^i A}{i!}B)C$. We have

$$T^{j}(T^{i}A \cdot B) = \sum T^{i+k}AT^{j-k}B\frac{j!}{k!(j-k)!}.$$

For fixed i + k = a and j - k = b we get

$$\sum_{j=b}^{a+b} (z-w)^{a+b-j} w^j \frac{1}{(a+b-j)!b!(j-b)!}.$$

Writing $w^j = w^b w^{j-b}$ we use binomial formula to get

$$\frac{z^a w^b}{a!b!} T^a A T^b B C,$$

as we should.

Using associativity we get $Y(A,z)Y(B,w) = Y(Y(A,z-w)B,w) = \sum Y(A_{(n)}B,w)(z-w)^{-n-1}$. This expression is called operator product expansion, they are used a lot in physics.

One of the consequence of associativity is the following formula (formula (2.3-8) from Frenkel's book):

$$[A_{(m)}, B_{(k)}] = \sum_{n>0} \binom{m}{n} (A_{(n)}B)_{m+k-n}.$$
 (1)

We will also need Borcherds identity:

$$(A_{(m)}B)_{(n)}C = \sum_{i\geq 0} (-1)^i \binom{m}{i} \left(A_{(m-i)}(B_{(n+i)}(C)) - (-1)^m B_{(m+n-i)}(A_{(i)}(C)) \right). \tag{2}$$

 C_2 -algebra of a vertex algebra V is defined as

$$V/\operatorname{Span}\{a_{(-2)}b\mid a,b\in V\}$$

with operation $\overline{a} \cdot \overline{b} = \overline{a_{(-1)}b}$, compare with the formula for commutative vertex algebra.

This operation is well-defined:

$$a_{(-1)}b_{(-2)}c \sim [a_{(-1)}, b_{-2}]c = \sum_{n>0} {\binom{-1}{n}} (A_{(n)}B)_{-3-n}C \sim 0,$$

here we used (1). Using (2) we get

$$(a_{-2}b)_{-1}c = \sum_{i>0} (\cdots A_{-2-i} \cdots B_{-3-i} \cdots) \sim 0.$$

Using Borcherds identity again for m = n = -1 we see that the only term not equivalent to zero is $A_{-1}(B_{-1}C)$, this gives

$$(A_{-1}B)_{-1}C = A_{-1}(B_{-1}C).$$

Using (1) we see that this operation is commutative.

It can also be checked that $a_{(0)}b$ gives a Poisson bracket on C_2 algebra. Zhu algebra of a graded vertex algebra V is defined as

$$Zhu(V) = V/(V \circ V).$$

Here

$$a \circ b = \sum_{i \ge 0} {\operatorname{deg} a \choose i} a_{(i-2)} b$$

for homogeneous elements. We define operation on Zhu(V) using

$$a * b = \sum_{i \ge 0} {\operatorname{deg} a \choose i} a_{(i-1)} b.$$

Let $o(a) = a_{(\deg a-1)}$. Then o(a) preserves graded components of any graded V-module (for a V-module M by $a_{(m)}$ we mean the corresponding field on M.) The $\overline{a} \mapsto o(a)$ gives a representation of Zhu(V) on M_{top} , the lowest degree component of M. This provides an equivalence between irreducible positive energy representations of V and simple Zhu(V)-modules.

V is called *chiralization* of A if Zhu(V) = A.

Positive grading on V gives filtration on V, hence filtration on Zhu(V). It can be checked that C_2 -algebra surjects onto gr Zhu(V). Moreover, comparing formulas we see that this is a map of Poisson algebras.

Example: one can show that $V^{\kappa}(\mathfrak{a})$ is a chiralization of $U(\mathfrak{a})$.

References

- [D1] Ilya Dumanski. Vertex Algebras I, https://gauss.math.yale.edu/il282/Ilya1pdf
- [D2] Ilya Dumanski, Vertex Algebras II, https://gauss.math.yale.edu/il282/Ilya2.pdf
- [F] Edward Frenkel. Langlands correspondence for loop groups. https://math.berkeley.edu/frenkel/loop.pdf
- [FBZ] E. V. Frenkel and D. Ben-Zvi, Vertex algebras and algebraic curves, vol. 88, Second ed., Mathematical Surveys and Monographs, American Mathematical Society, Providence, RI, 2004. MR 2005d:17035